top of page

Publications

From IISER Tirupati :

​

34. Comparing Nitric oxide dioxygenation (NOD) reaction of an Iron(III)-nitrosyl versus Iron(III)-superoxo: An insight into the

      NOD Chemistry

      Ghosh, S.; Yenuganti, M.; Das, S.; Kulbir; Sahoo, C. S.; Kumar, P.*

      2023, (Under Review)

​

33. Exploring the carbonic anhydrase-mimetic [(PMDTA)2ZnII2(OH−)2]2+ for nitric oxide monooxygenation

      Das, S. and Kumar, P.*

      Dalton. Trans., 2024, 53, 6173-6177

      Link: https://doi.org/10.1039/D4DT00407H

​

32. Acid-induced Conversion of Nitrite to Nitric Oxide at Copper(II) Center: A New Catalytic Pathway

      Bhardwaj. P.; Kulbir; Devi, T.*; Kumar, P.*

      Inorg. Chem. Front.202310, 7285-7295

      Link: https://doi.org/10.1039/D3QI01637D

​

31. Mechanistic Insights of Nitric Oxide Oxygenation (NOO) Reactions of {CrNO}5 & {CoNO}8

      Keerthi, A. C. S.; Das, S.; Kulbir; Bhardwaj, P.; Palashuddin, Md. S. K.; Kumar, P.*

      Dalton. Trans.2023, 52, 16492-16499

       Link: https://doi.org/10.1039/D3DT03177B

​

30. Nitric Oxide Oxygenation (NOO) Reactions of Cobalt-peroxo & Cobalt-nitrosyl Complexes

      Kulbir; Keerthi, A. C. S.; Beegam, S.; Das, S.; Bhardwaj, P.; Ansari, M.; Singh, K.; Kumar, P.*

      Inorg. Chem.2023, 62, 7385-7392

      Link: https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00639

      
29. Exploring the Nitric Oxide Dioxygenation (NOD) Reactions of Manganese-peroxo Complexes

      Das, S.; Keerthi, A. C. S.; Kulbir; Singh, S.; Roy, S.; Singh, R.; Ghosh, S.; Kumar, P.*

      Dalton. Trans.2023, 52, 5095-5100.

      Link: https://doi.org/10.1039/D3DT00159H

​

28. Finding a new pathway for acid-induced nitrite reduction reaction: formation of nitric oxide with hydrogen peroxide?

      Kulbir; Das, S.; Devi, T.;  Ghosh, S.; Sahoo, S.; Kumar, P.*

      Chem. Sci., 2023, 14, 2935-2942

      Link: https://doi.org/10.1039/D2SC06704H

​

27. Why Intermolecular Nitric Oxide (NO) Transfer? Exploring the Factors and Mechanistic Aspects of NO Transfer Reaction

      Das, S.; Kulbir, K.; Ray, S.; Devi, T.; Ghosh, S. Harmalkar, S. S.; Dhuri, S. N.; Mondal, P.; Kumar, P.*

      Chem. Sci., 2022, 13, 1706-1714

      Link:  https://doi.org/10.1039/D1SC06803B

​

26. Oxygen Atom Transfer Promoted Nitrate to Nitric Oxide Transformation: A Step-wise Reduction of Nitrate → Nitrite → Nitric

      Oxide” 

      Kulbir, K.; Das, S.; Devi, T.; Goswami, M.; Yenuganti, M.; Bhardwaj, P.; Ghosh, S. Sahoo, S. C.; Kumar, P.*

      Chem. Sci., 2021, 12, 10605-10612.

      Link: https://doi.org/10.1039/D1SC00803J

  

25. A side-on Mn(III)-peroxo supported by a non-heme pentadentate N3Py2 ligand: Synthesis, characterization and reactivity

      studies    

      Narulkar, D. D., Ansari, A., Vardhaman, A. A., Harmalkar, S. S., Giribabu, L., Dhavale, V. M., Sankaralingam, M., Das, S.,

      Kumar, P., Dhuri, S. N.      

      Dalton Trans., 2021, 50, 2824-2831.

      Link: https://doi.org/10.1039/D0DT03706K

 

24. Nitric Oxide Dioxygenation (NOD) Reactions of CoIII-peroxo and NiIII-peroxo Complexes: NOD Versus NO Activation

      Yenuganti, M.; Das, S.; Kulbir; Ghosh, S.; Bhardwaj, P.; Pawar, S. S.; Sahoo, C. S.; Kumar, P.

      Inorg. Chem. Front., 2020, 7, 4872-4882.

      Link: https://doi.org/10.1039/D0QI01023E

​

23. Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection.  

      Kalaiyarasan, G.; Joseph, J.*; Kumar, P.*  

      ACS Omega20205, 22278.

      Link: https://doi.org/10.1021/acsomega.0c02627

​

22. Critical insights into the interactions of heat shock protein 70 with the phospholipids
      Dhanasekaran, M.; Komal, K.; Geethika K., Kumar, P. Mandal, S. S. ⃰ 
     
Phys. Chem. Chem. Phys., 202022, 19238

      Link: https://doi.org/10.1039/D0CP03505J

​

21. Nitric oxide monooxygenation (NOM) reaction of a Cobalt-nitrosyl {Co(NO)}8 to CoII-nitrito {CoII(NO2–)}: Acid-base

      induced cyclic loop of hydrogen gas (H2) evolution.

      Das, S.; Kulbir; Ghosh, S.; Sahoo, C. S.; Kumar, P.* 

      Chem. Sci., 2020, 11, 5037.

      Link: https://doi.org/10.1039/D0SC01572E

​

20. Finding a new pathway for acid-induced nitrite reduction reaction: formation of nitric oxide with hydrogen peroxide.

      Ajmal, P. Y. M.;‡ Ghosh, S.;‡ Narayan, Y.; Yadav, Y.; Sahoo, C. S.; Kumar, P.* 

      Dalton. Trans., 2019, 48, 13916.

      Link: https://doi.org/10.1039/C9DT02834J

​

19. Zein film functionalized with gold nanoparticles and the factors affecting its mechanical properties.

      Ajmal, P. Y. M.; Jayaprakash A.; Ghosh, S.; Yenugunti, M.; Jaswal, V. S.; Singh, K.; Mandal, S.; Shahid, M.; Yadav, M.;

      Das, S.; Kumar, P.* (2019):

      RSC Adv., 2019, 9, 25184.

      Link: https://doi.org/10.1039/C9RA04527A

​

18. Spectroscopic investigations on La3+, Pr3+, Nd3+ and Gd3+ complexes with a multidentate ligating system:

      Luminescence properties and biological activities.

      Shahid, M.;* Siddique, A.; Ashafaq, M.; Raizada, M.; Sama, F.; Ahamad, M. N.; Mantasha, I.; Ansari, I. A.; Khan, I. M.; 

      Kumar, P.; Fatma, K., Siddiqi, Z. A.

      J. Mol. Struc., 2018, 1173, 918.

      Link: https://doi.org/10.1016/j.molstruc.2018.07.035

 

Publications before joining IISER Tirupati :

​

17. Nitric Oxide Dioxygenation Reactions and Their Mechanistic Insights     

      Kumar, P.

      Proceedings of National Conference on Recent Advances in Chemical Sciences. 2016, 1, 36.

​

16. Nitric Oxide Dioxygenase reactivities of Manganese(IV)-Peroxo and Iron(III)-Superoxo and their Mechanistic Insights.   

      Hong, S.||; Kumar, P.||; Cho, K-B.; Lee, Y. M.; Karlin, K. D.; Nam, W. (2016):

      Angew. Chem. Int. Ed.2016, 55, 12403.

​

15. Factors That Control Nitric Oxide Transfer and Dioxygenation Reactivity of Cobalt(III)-Nitrosyl Complexes: A Combined

      Experimental and Theoretical Investigation.                                                                                                                          

      Kumar, P.; Lee, Y.M.; Chen, J.; Park, Y. J.; Yao, J.; Chen, H.; Karlin, K. D.; Nam, W.

      J. Am. Chem. Soc., 2016, 138, 7753.

​

14. Reactions of Co(III)–nitrosyl complexes with superoxide and their mechanistic insights.                                                   

      Kumar, P.; Lee, Y.M.; Park, Y.J.; Siegler, M.A.; Karlin, K. D.; Nam, W. 

      J. Am. Chem. Soc., 2015, 137, 4284.

​

13. Nitric oxide sensors based on copper(II) complexes of N-donor ligands.                                                                                

      Kumar, P.; Kalita, A.; Mondal, B. 

      Inorg. Chim. Acta., 2013, 404, 88.

​

12. Formation of a Cu(II)–phenoxyl radical complex from a Cu(II)–phenolate complex: A new model for galactose oxidase.

      Debnath, R.D.; Kalita, A.; Kumar, P.; Mondal, B.; Ganguli, J. N. (2013):

      Polyhedron, 2013, 51, 222.

​

11. Nitric oxide reactivity of Cu(II) complexes of tetra- and pentadentate ligands: structural influence in deciding the reduction 

      pathway.                                                                                                                                                                                  

      Kumar, P.; Kalita, A.; Mondal, B.

      Dalton Trans., 2013, 42, 5731.

​

10. Copper(II) complexes as turn on fluorescent sensors for nitric oxide.                                                                                   

      Kumar, P.; Kalita, A.; Mondal, B.

      Dalton Trans., 2012, 41, 10543.

​

09. DNA binding, nuclease activity and cytotoxicity studies of Cu(II) complexes of tridentate ligands.                                   

      Kumar, P.; Gorai, S.; Santra, M.K.; Mondal, B.; Manna, D. 

      Dalton Trans., 2012, 41, 7573.

​

08. Reaction of a copper(II)–nitrosyl complex with hydrogen peroxide: putative formation of a copper(I)–peroxynitrite

      intermediate.      

      Kalita, A.; Kumar, P.; Mondal, B.

      Chem. Commun., 2012, 48, 4636.

​

07. First example of a Cu(I)–(η2–O,O)nitrite complex derived from Cu(II)–nitrosyl.                                                                 

      Kalita, A.; Kumar, P.; Deka, R.C.; Mondal, B.

      Chem. Commun., 2012, 48, 1251.

​

06. Role of ligand to control the mechanism of nitric oxide reduction of copper(II) complexes and ligand nitrosation.             

      Kalita, A.; Kumar, P.; Deka, R.C.; Mondal, B. 

      Inorg. Chem., 2011, 50, 11868.

​

05. DNA binding and nuclease activity of copper(II) complexes of tridentate ligands.                                                             

      Kumar, P.; Baidya, B.; Chaturvedi, S.K.; Khan, R.H.; Manna, D.; Mondal, B.

      Inorg. Chim. Acta., 2011, 376, 264.

​

04. Reduction of copper(II) complexes of tridentate ligands by nitric oxide and fluorescent detection of NO in methanol and water

      media.                                                                                                                                                                                     

      Kumar, P.; Kalita, A.; Mondal, B. 

      Dalton Trans., 2011, 40, 8656.

​

03. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper(II) complex.                         

      Mondal, B.; Kumar, P.; Ghosh, P.; Kalita, A.

      Chem. Commun., 2011, 47, 2964.

​

02. An asymmetric dinuclear copper(II) complex with phenoxo and acetate bridge: synthesis, structure and magnetic studies.   

      Dutta, G.; Debnath, R.K.; Kalita, A.; Kumar, P.; Sarma, M.; Boomi Shankar, R.; Mondal, B.

      Polyhedron, 2011, 30, 293.

​

01. Reduction of Copper(II) Complexes of Tripodal Ligands by Nitric Oxide and Trinitrosation of the Ligands.                       

      Sarma, M.; Kalita, A.; Kumar, P.; Singh, A.; Mondal, B.

      J. Am. Chem. Soc., 2010, 132, 7846

​

bottom of page