Publications
From IISER Tirupati :
41. Comparing Nitric oxide dioxygenation (NOD) reaction of an Iron(III)-nitrosyl versus Iron(III)-superoxo: An insight into the
NOD Chemistry
Ghosh, S.; Yenuganti, M.; Das, S.; Kulbir; Sahoo, C. S.; Kumar, P.*
2024, (Under Preparation)
40. Nitric oxide formation in Acid-catalyzed Nitrite reduction on Copper(II) center via a proposed Copper-nitrosyl intermediate
Shameer, M.S.; Bhardwaj. P.; Kulbir; Karumban, K. S.; Kumar, P.*
2024, (Under Preparation)
39. Mechanistic Aspect of Acid-Induced Iron-bound Nitrite Reduction: Nitric oxide formation by Iron-nitrosyl intermediate
Bhardwaj. P.; Kumar, P.*
Chem. Sci., 2024, XX, YYYY. (Under Peer-review)
38. A Terpyridine based Copper Complex for Electrochemical Reduction of Nitrite to Nitric Oxide
Biswas, J.; Sanden, S.; Bhardwaj. P.; Siegmund, D. Kumar, P.* U.-P. Apfel
Dalton. Trans., 2024, XX, YYYY. (Under Peer-review)
37. Physicochemical Analysis of Cu(II)-Driven Electrochemical CO2 Reduction and its Competition with Proton Reduction
Akhter, S. Sk.; Srivastava, D.; Mishra, A.; Patra, A.; Kumar, P. Padhi, S.
Chem. Eur. J., 2024, (Just Accepted)
Link: https://doi.org/10.1002/chem.202403321
36. Trapping an Elusive Fe (IV)-Superoxo Intermediate Inside a Self-Assembled Nanocage in Water at Room Temperature
Gera, R.; De, P.; Singh, K.K.; Jannuzzi, SAV.; Mohanty, A.; Velasco, L.; Kulbir, K.; Kumar, P.; Marco, JF.; Nagarajan, K.;
Pecharromán, C.; Rodríguez-Pascual, PM.; DeBeer, S.; Moonshiram, D.; Gupta, SS.; Dasgupta, J.
J. Am. Chem. Soc., 2024, 146, 21729.
Link: https://doi.org/10.1021/jacs.4c05849
35. Acid-catalyzed transformation of Nitrite to Nitric Oxide on Copper(II)-Cobalt(II) Centers in a Bimetallic Complex
Biswas, J.; Kulbir; Bhardwaj. P.; Ghosh, S.; Sahoo, S.C.; Apfel, U.;* Kumar, P.*
Chem. Eur. J., 2024, XX, YYYY. (Just Accepted)
Link: https://doi.org/10.1002/chem.202402295
34. Efficient Mechanochemical Conversion of Elemental Sulfur to Circularly Polarized Luminescent Sulfur Quantum Dots
Hasan, H.; Kulbir, Kumar, P.; Sk, MP.
J. Phys. Chem. C., 2024, 128, 8114–8122.
Link: https://doi.org/10.1021/acs.jpcc.4c01756
33. Exploring the carbonic anhydrase-mimetic [(PMDTA)2ZnII2(OH−)2]2+ for nitric oxide monooxygenation
Das, S. and Kumar, P.*
Dalton. Trans., 2024, 53, 6173-6177
Link: https://doi.org/10.1039/D4DT00407H
32. Acid-induced Conversion of Nitrite to Nitric Oxide at Copper(II) Center: A New Catalytic Pathway
Bhardwaj. P.; Kulbir; Devi, T.*; Kumar, P.*
Inorg. Chem. Front., 2023, 10, 7285-7295
Link: https://doi.org/10.1039/D3QI01637D
31. Mechanistic Insights of Nitric Oxide Oxygenation (NOO) Reactions of {CrNO}5 & {CoNO}8
Keerthi, A. C. S.; Das, S.; Kulbir; Bhardwaj, P.; Palashuddin, Md. S. K.; Kumar, P.*
Dalton. Trans., 2023, 52, 16492-16499
Link: https://doi.org/10.1039/D3DT03177B
30. Nitric Oxide Oxygenation (NOO) Reactions of Cobalt-peroxo & Cobalt-nitrosyl Complexes
Kulbir; Keerthi, A. C. S.; Beegam, S.; Das, S.; Bhardwaj, P.; Ansari, M.; Singh, K.; Kumar, P.*
Inorg. Chem., 2023, 62, 7385-7392
Link: https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00639
29. Exploring the Nitric Oxide Dioxygenation (NOD) Reactions of Manganese-peroxo Complexes
Das, S.; Keerthi, A. C. S.; Kulbir; Singh, S.; Roy, S.; Singh, R.; Ghosh, S.; Kumar, P.*
Dalton. Trans., 2023, 52, 5095-5100.
Link: https://doi.org/10.1039/D3DT00159H
28. Finding a new pathway for acid-induced nitrite reduction reaction: formation of nitric oxide with hydrogen peroxide?
Kulbir; Das, S.; Devi, T.; Ghosh, S.; Sahoo, S.; Kumar, P.*
Chem. Sci., 2023, 14, 2935-2942
Link: https://doi.org/10.1039/D2SC06704H
27. Why Intermolecular Nitric Oxide (NO) Transfer? Exploring the Factors and Mechanistic Aspects of NO Transfer Reaction
Das, S.; Kulbir, K.; Ray, S.; Devi, T.; Ghosh, S. Harmalkar, S. S.; Dhuri, S. N.; Mondal, P.; Kumar, P.*
Chem. Sci., 2022, 13, 1706-1714
Link: https://doi.org/10.1039/D1SC06803B
26. Oxygen Atom Transfer Promoted Nitrate to Nitric Oxide Transformation: A Step-wise Reduction of Nitrate → Nitrite → Nitric
Oxide”
Kulbir, K.; Das, S.; Devi, T.; Goswami, M.; Yenuganti, M.; Bhardwaj, P.; Ghosh, S. Sahoo, S. C.; Kumar, P.*
Chem. Sci., 2021, 12, 10605-10612.
Link: https://doi.org/10.1039/D1SC00803J
25. A side-on Mn(III)-peroxo supported by a non-heme pentadentate N3Py2 ligand: Synthesis, characterization and reactivity
studies
Narulkar, D. D., Ansari, A., Vardhaman, A. A., Harmalkar, S. S., Giribabu, L., Dhavale, V. M., Sankaralingam, M., Das, S.,
Kumar, P., Dhuri, S. N.
Dalton Trans., 2021, 50, 2824-2831.
Link: https://doi.org/10.1039/D0DT03706K
24. Nitric Oxide Dioxygenation (NOD) Reactions of CoIII-peroxo and NiIII-peroxo Complexes: NOD Versus NO Activation
Yenuganti, M.; Das, S.; Kulbir; Ghosh, S.; Bhardwaj, P.; Pawar, S. S.; Sahoo, C. S.; Kumar, P.*
Inorg. Chem. Front., 2020, 7, 4872-4882.
Link: https://doi.org/10.1039/D0QI01023E
23. Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection.
Kalaiyarasan, G.; Joseph, J.*; Kumar, P.*
ACS Omega, 2020, 5, 22278.
Link: https://doi.org/10.1021/acsomega.0c02627
22. Critical insights into the interactions of heat shock protein 70 with the phospholipids
Dhanasekaran, M.; Komal, K.; Geethika K., Kumar, P. Mandal, S. S. ⃰
Phys. Chem. Chem. Phys., 2020, 22, 19238
Link: https://doi.org/10.1039/D0CP03505J
21. Nitric oxide monooxygenation (NOM) reaction of a Cobalt-nitrosyl {Co(NO)}8 to CoII-nitrito {CoII(NO2–)}: Acid-base
induced cyclic loop of hydrogen gas (H2) evolution.
Das, S.; Kulbir; Ghosh, S.; Sahoo, C. S.; Kumar, P.*
Chem. Sci., 2020, 11, 5037.
Link: https://doi.org/10.1039/D0SC01572E
20. Finding a new pathway for acid-induced nitrite reduction reaction: formation of nitric oxide with hydrogen peroxide.
Ajmal, P. Y. M.;‡ Ghosh, S.;‡ Narayan, Y.; Yadav, Y.; Sahoo, C. S.; Kumar, P.*
Dalton. Trans., 2019, 48, 13916.
Link: https://doi.org/10.1039/C9DT02834J
19. Zein film functionalized with gold nanoparticles and the factors affecting its mechanical properties.
Ajmal, P. Y. M.; Jayaprakash A.; Ghosh, S.; Yenugunti, M.; Jaswal, V. S.; Singh, K.; Mandal, S.; Shahid, M.; Yadav, M.;
Das, S.; Kumar, P.* (2019):
RSC Adv., 2019, 9, 25184.
Link: https://doi.org/10.1039/C9RA04527A
18. Spectroscopic investigations on La3+, Pr3+, Nd3+ and Gd3+ complexes with a multidentate ligating system:
Luminescence properties and biological activities.
Shahid, M.;* Siddique, A.; Ashafaq, M.; Raizada, M.; Sama, F.; Ahamad, M. N.; Mantasha, I.; Ansari, I. A.; Khan, I. M.;
Kumar, P.; Fatma, K., Siddiqi, Z. A.
J. Mol. Struc., 2018, 1173, 918.
Link: https://doi.org/10.1016/j.molstruc.2018.07.035
Publications before joining IISER Tirupati :
17. Nitric Oxide Dioxygenation Reactions and Their Mechanistic Insights
Kumar, P.
Proceedings of National Conference on Recent Advances in Chemical Sciences. 2016, 1, 36.
16. Nitric Oxide Dioxygenase reactivities of Manganese(IV)-Peroxo and Iron(III)-Superoxo and their Mechanistic Insights.
Hong, S.||; Kumar, P.||; Cho, K-B.; Lee, Y. M.; Karlin, K. D.; Nam, W. (2016):
Angew. Chem. Int. Ed., 2016, 55, 12403.
15. Factors That Control Nitric Oxide Transfer and Dioxygenation Reactivity of Cobalt(III)-Nitrosyl Complexes: A Combined
Experimental and Theoretical Investigation.
Kumar, P.; Lee, Y.M.; Chen, J.; Park, Y. J.; Yao, J.; Chen, H.; Karlin, K. D.; Nam, W.
J. Am. Chem. Soc., 2016, 138, 7753.
14. Reactions of Co(III)–nitrosyl complexes with superoxide and their mechanistic insights.
Kumar, P.; Lee, Y.M.; Park, Y.J.; Siegler, M.A.; Karlin, K. D.; Nam, W.
J. Am. Chem. Soc., 2015, 137, 4284.
13. Nitric oxide sensors based on copper(II) complexes of N-donor ligands.
Kumar, P.; Kalita, A.; Mondal, B.
Inorg. Chim. Acta., 2013, 404, 88.
Debnath, R.D.; Kalita, A.; Kumar, P.; Mondal, B.; Ganguli, J. N. (2013):
Polyhedron, 2013, 51, 222.
Kumar, P.; Kalita, A.; Mondal, B.
Dalton Trans., 2013, 42, 5731.
10. Copper(II) complexes as turn on fluorescent sensors for nitric oxide.
Kumar, P.; Kalita, A.; Mondal, B.
Dalton Trans., 2012, 41, 10543.
09. DNA binding, nuclease activity and cytotoxicity studies of Cu(II) complexes of tridentate ligands.
Kumar, P.; Gorai, S.; Santra, M.K.; Mondal, B.; Manna, D.
Dalton Trans., 2012, 41, 7573.
08. Reaction of a copper(II)–nitrosyl complex with hydrogen peroxide: putative formation of a copper(I)–peroxynitrite
intermediate.
Kalita, A.; Kumar, P.; Mondal, B.
Chem. Commun., 2012, 48, 4636.
07. First example of a Cu(I)–(η2–O,O)nitrite complex derived from Cu(II)–nitrosyl.
Kalita, A.; Kumar, P.; Deka, R.C.; Mondal, B.
Chem. Commun., 2012, 48, 1251.
06. Role of ligand to control the mechanism of nitric oxide reduction of copper(II) complexes and ligand nitrosation.
Kalita, A.; Kumar, P.; Deka, R.C.; Mondal, B.
Inorg. Chem., 2011, 50, 11868.
05. DNA binding and nuclease activity of copper(II) complexes of tridentate ligands.
Kumar, P.; Baidya, B.; Chaturvedi, S.K.; Khan, R.H.; Manna, D.; Mondal, B.
Inorg. Chim. Acta., 2011, 376, 264.
04. Reduction of copper(II) complexes of tridentate ligands by nitric oxide and fluorescent detection of NO in methanol and water
media.
Kumar, P.; Kalita, A.; Mondal, B.
Dalton Trans., 2011, 40, 8656.
03. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper(II) complex.
Mondal, B.; Kumar, P.; Ghosh, P.; Kalita, A.
Chem. Commun., 2011, 47, 2964.
02. An asymmetric dinuclear copper(II) complex with phenoxo and acetate bridge: synthesis, structure and magnetic studies.
Dutta, G.; Debnath, R.K.; Kalita, A.; Kumar, P.; Sarma, M.; Boomi Shankar, R.; Mondal, B.
Polyhedron, 2011, 30, 293.
01. Reduction of Copper(II) Complexes of Tripodal Ligands by Nitric Oxide and Trinitrosation of the Ligands.
Sarma, M.; Kalita, A.; Kumar, P.; Singh, A.; Mondal, B.
J. Am. Chem. Soc., 2010, 132, 7846