top of page

Publications

From IISER Tirupati :

41. Comparing Nitric oxide dioxygenation (NOD) reaction of an Iron(III)-nitrosyl versus Iron(III)-superoxo: An insight into the

      NOD Chemistry

      Ghosh, S.; Yenuganti, M.; Das, S.; Kulbir; Sahoo, C. S.; Kumar, P.*

      2024, (Under Preparation)

40. Nitric oxide formation in Acid-catalyzed Nitrite reduction on Copper(II) center via a proposed Copper-nitrosyl intermediate

      Shameer, M.S.; Bhardwaj. P.; Kulbir; Karumban, K. S.; Kumar, P.*

      2024, (Under Preparation)

39. Mechanistic Aspect of Acid-Induced Iron-bound Nitrite Reduction: Nitric oxide formation by Iron-nitrosyl intermediate

      Bhardwaj. P.; Kumar, P.*

      Chem. Sci., 2024, XX, YYYY. (Under Peer-review)

38. A Terpyridine based Copper Complex for Electrochemical Reduction of Nitrite to Nitric Oxide

      Biswas, J.; Sanden, S.; Bhardwaj. P.; Siegmund, D. Kumar, P.* U.-P. Apfel

       Dalton. Trans., 2024, XX, YYYY. (Under Peer-review)

37. Physicochemical Analysis of Cu(II)-Driven Electrochemical CO2 Reduction and its Competition with Proton Reduction

      Akhter, S. Sk.; Srivastava, D.; Mishra, A.; Patra, A.; Kumar, P. Padhi, S.

      Chem. Eur. J., 2024, (Just Accepted)

      Link: https://doi.org/10.1002/chem.202403321

36. Trapping an Elusive Fe (IV)-Superoxo Intermediate Inside a Self-Assembled Nanocage in Water at Room Temperature

      Gera, R.; De, P.; Singh, K.K.; Jannuzzi, SAV.; Mohanty, A.; Velasco, L.; Kulbir, K.; Kumar, P.; Marco, JF.; Nagarajan, K.;

      Pecharromán, C.; Rodríguez-Pascual, PM.;  DeBeer, S.; Moonshiram, D.; Gupta, SS.; Dasgupta, J.

      J. Am. Chem. Soc., 2024, 146, 21729.

      Link: https://doi.org/10.1021/jacs.4c05849

35. Acid-catalyzed transformation of Nitrite to Nitric Oxide on Copper(II)-Cobalt(II) Centers in a Bimetallic Complex

      Biswas, J.; Kulbir; Bhardwaj. P.; Ghosh, S.; Sahoo, S.C.; Apfel, U.;* Kumar, P.*

      Chem. Eur. J., 2024, XX, YYYY. (Just Accepted)

      Link: https://doi.org/10.1002/chem.202402295

34. Efficient Mechanochemical Conversion of Elemental Sulfur to Circularly Polarized Luminescent Sulfur Quantum Dots

      Hasan, H.; Kulbir, Kumar, P.; Sk, MP.

      J. Phys. Chem. C., 2024, 128, 8114–8122.

      Link: https://doi.org/10.1021/acs.jpcc.4c01756

33. Exploring the carbonic anhydrase-mimetic [(PMDTA)2ZnII2(OH−)2]2+ for nitric oxide monooxygenation

      Das, S. and Kumar, P.*

      Dalton. Trans., 2024, 53, 6173-6177

      Link: https://doi.org/10.1039/D4DT00407H

32. Acid-induced Conversion of Nitrite to Nitric Oxide at Copper(II) Center: A New Catalytic Pathway

      Bhardwaj. P.; Kulbir; Devi, T.*; Kumar, P.*

      Inorg. Chem. Front.202310, 7285-7295

      Link: https://doi.org/10.1039/D3QI01637D

31. Mechanistic Insights of Nitric Oxide Oxygenation (NOO) Reactions of {CrNO}5 & {CoNO}8

      Keerthi, A. C. S.; Das, S.; Kulbir; Bhardwaj, P.; Palashuddin, Md. S. K.; Kumar, P.*

      Dalton. Trans.2023, 52, 16492-16499

       Link: https://doi.org/10.1039/D3DT03177B

30. Nitric Oxide Oxygenation (NOO) Reactions of Cobalt-peroxo & Cobalt-nitrosyl Complexes

      Kulbir; Keerthi, A. C. S.; Beegam, S.; Das, S.; Bhardwaj, P.; Ansari, M.; Singh, K.; Kumar, P.*

      Inorg. Chem.2023, 62, 7385-7392

      Link: https://pubs.acs.org/doi/10.1021/acs.inorgchem.3c00639

      
29. Exploring the Nitric Oxide Dioxygenation (NOD) Reactions of Manganese-peroxo Complexes

      Das, S.; Keerthi, A. C. S.; Kulbir; Singh, S.; Roy, S.; Singh, R.; Ghosh, S.; Kumar, P.*

      Dalton. Trans.2023, 52, 5095-5100.

      Link: https://doi.org/10.1039/D3DT00159H

28. Finding a new pathway for acid-induced nitrite reduction reaction: formation of nitric oxide with hydrogen peroxide?

      Kulbir; Das, S.; Devi, T.;  Ghosh, S.; Sahoo, S.; Kumar, P.*

      Chem. Sci., 2023, 14, 2935-2942

      Link: https://doi.org/10.1039/D2SC06704H

27. Why Intermolecular Nitric Oxide (NO) Transfer? Exploring the Factors and Mechanistic Aspects of NO Transfer Reaction

      Das, S.; Kulbir, K.; Ray, S.; Devi, T.; Ghosh, S. Harmalkar, S. S.; Dhuri, S. N.; Mondal, P.; Kumar, P.*

      Chem. Sci., 2022, 13, 1706-1714

      Link:  https://doi.org/10.1039/D1SC06803B

26. Oxygen Atom Transfer Promoted Nitrate to Nitric Oxide Transformation: A Step-wise Reduction of Nitrate → Nitrite → Nitric

      Oxide” 

      Kulbir, K.; Das, S.; Devi, T.; Goswami, M.; Yenuganti, M.; Bhardwaj, P.; Ghosh, S. Sahoo, S. C.; Kumar, P.*

      Chem. Sci., 2021, 12, 10605-10612.

      Link: https://doi.org/10.1039/D1SC00803J

  

25. A side-on Mn(III)-peroxo supported by a non-heme pentadentate N3Py2 ligand: Synthesis, characterization and reactivity

      studies    

      Narulkar, D. D., Ansari, A., Vardhaman, A. A., Harmalkar, S. S., Giribabu, L., Dhavale, V. M., Sankaralingam, M., Das, S.,

      Kumar, P., Dhuri, S. N.      

      Dalton Trans., 2021, 50, 2824-2831.

      Link: https://doi.org/10.1039/D0DT03706K

 

24. Nitric Oxide Dioxygenation (NOD) Reactions of CoIII-peroxo and NiIII-peroxo Complexes: NOD Versus NO Activation

      Yenuganti, M.; Das, S.; Kulbir; Ghosh, S.; Bhardwaj, P.; Pawar, S. S.; Sahoo, C. S.; Kumar, P.

      Inorg. Chem. Front., 2020, 7, 4872-4882.

      Link: https://doi.org/10.1039/D0QI01023E

23. Phosphorus-Doped Carbon Quantum Dots as Fluorometric Probes for Iron Detection.  

      Kalaiyarasan, G.; Joseph, J.*; Kumar, P.*  

      ACS Omega20205, 22278.

      Link: https://doi.org/10.1021/acsomega.0c02627

22. Critical insights into the interactions of heat shock protein 70 with the phospholipids
      Dhanasekaran, M.; Komal, K.; Geethika K., Kumar, P. Mandal, S. S. ⃰ 
     
Phys. Chem. Chem. Phys., 202022, 19238

      Link: https://doi.org/10.1039/D0CP03505J

21. Nitric oxide monooxygenation (NOM) reaction of a Cobalt-nitrosyl {Co(NO)}8 to CoII-nitrito {CoII(NO2–)}: Acid-base

      induced cyclic loop of hydrogen gas (H2) evolution.

      Das, S.; Kulbir; Ghosh, S.; Sahoo, C. S.; Kumar, P.* 

      Chem. Sci., 2020, 11, 5037.

      Link: https://doi.org/10.1039/D0SC01572E

20. Finding a new pathway for acid-induced nitrite reduction reaction: formation of nitric oxide with hydrogen peroxide.

      Ajmal, P. Y. M.;‡ Ghosh, S.;‡ Narayan, Y.; Yadav, Y.; Sahoo, C. S.; Kumar, P.* 

      Dalton. Trans., 2019, 48, 13916.

      Link: https://doi.org/10.1039/C9DT02834J

19. Zein film functionalized with gold nanoparticles and the factors affecting its mechanical properties.

      Ajmal, P. Y. M.; Jayaprakash A.; Ghosh, S.; Yenugunti, M.; Jaswal, V. S.; Singh, K.; Mandal, S.; Shahid, M.; Yadav, M.;

      Das, S.; Kumar, P.* (2019):

      RSC Adv., 2019, 9, 25184.

      Link: https://doi.org/10.1039/C9RA04527A

18. Spectroscopic investigations on La3+, Pr3+, Nd3+ and Gd3+ complexes with a multidentate ligating system:

      Luminescence properties and biological activities.

      Shahid, M.;* Siddique, A.; Ashafaq, M.; Raizada, M.; Sama, F.; Ahamad, M. N.; Mantasha, I.; Ansari, I. A.; Khan, I. M.; 

      Kumar, P.; Fatma, K., Siddiqi, Z. A.

      J. Mol. Struc., 2018, 1173, 918.

      Link: https://doi.org/10.1016/j.molstruc.2018.07.035

 

Publications before joining IISER Tirupati :

17. Nitric Oxide Dioxygenation Reactions and Their Mechanistic Insights     

      Kumar, P.

      Proceedings of National Conference on Recent Advances in Chemical Sciences. 2016, 1, 36.

16. Nitric Oxide Dioxygenase reactivities of Manganese(IV)-Peroxo and Iron(III)-Superoxo and their Mechanistic Insights.   

      Hong, S.||; Kumar, P.||; Cho, K-B.; Lee, Y. M.; Karlin, K. D.; Nam, W. (2016):

      Angew. Chem. Int. Ed.2016, 55, 12403.

15. Factors That Control Nitric Oxide Transfer and Dioxygenation Reactivity of Cobalt(III)-Nitrosyl Complexes: A Combined

      Experimental and Theoretical Investigation.                                                                                                                          

      Kumar, P.; Lee, Y.M.; Chen, J.; Park, Y. J.; Yao, J.; Chen, H.; Karlin, K. D.; Nam, W.

      J. Am. Chem. Soc., 2016, 138, 7753.

14. Reactions of Co(III)–nitrosyl complexes with superoxide and their mechanistic insights.                                                   

      Kumar, P.; Lee, Y.M.; Park, Y.J.; Siegler, M.A.; Karlin, K. D.; Nam, W. 

      J. Am. Chem. Soc., 2015, 137, 4284.

13. Nitric oxide sensors based on copper(II) complexes of N-donor ligands.                                                                                

      Kumar, P.; Kalita, A.; Mondal, B. 

      Inorg. Chim. Acta., 2013, 404, 88.

12. Formation of a Cu(II)–phenoxyl radical complex from a Cu(II)–phenolate complex: A new model for galactose oxidase.

      Debnath, R.D.; Kalita, A.; Kumar, P.; Mondal, B.; Ganguli, J. N. (2013):

      Polyhedron, 2013, 51, 222.

11. Nitric oxide reactivity of Cu(II) complexes of tetra- and pentadentate ligands: structural influence in deciding the reduction 

      pathway.                                                                                                                                                                                  

      Kumar, P.; Kalita, A.; Mondal, B.

      Dalton Trans., 2013, 42, 5731.

10. Copper(II) complexes as turn on fluorescent sensors for nitric oxide.                                                                                   

      Kumar, P.; Kalita, A.; Mondal, B.

      Dalton Trans., 2012, 41, 10543.

09. DNA binding, nuclease activity and cytotoxicity studies of Cu(II) complexes of tridentate ligands.                                   

      Kumar, P.; Gorai, S.; Santra, M.K.; Mondal, B.; Manna, D. 

      Dalton Trans., 2012, 41, 7573.

08. Reaction of a copper(II)–nitrosyl complex with hydrogen peroxide: putative formation of a copper(I)–peroxynitrite

      intermediate.      

      Kalita, A.; Kumar, P.; Mondal, B.

      Chem. Commun., 2012, 48, 4636.

07. First example of a Cu(I)–(η2–O,O)nitrite complex derived from Cu(II)–nitrosyl.                                                                 

      Kalita, A.; Kumar, P.; Deka, R.C.; Mondal, B.

      Chem. Commun., 2012, 48, 1251.

06. Role of ligand to control the mechanism of nitric oxide reduction of copper(II) complexes and ligand nitrosation.             

      Kalita, A.; Kumar, P.; Deka, R.C.; Mondal, B. 

      Inorg. Chem., 2011, 50, 11868.

05. DNA binding and nuclease activity of copper(II) complexes of tridentate ligands.                                                             

      Kumar, P.; Baidya, B.; Chaturvedi, S.K.; Khan, R.H.; Manna, D.; Mondal, B.

      Inorg. Chim. Acta., 2011, 376, 264.

04. Reduction of copper(II) complexes of tridentate ligands by nitric oxide and fluorescent detection of NO in methanol and water

      media.                                                                                                                                                                                     

      Kumar, P.; Kalita, A.; Mondal, B. 

      Dalton Trans., 2011, 40, 8656.

03. Fluorescence-based detection of nitric oxide in aqueous and methanol media using a copper(II) complex.                         

      Mondal, B.; Kumar, P.; Ghosh, P.; Kalita, A.

      Chem. Commun., 2011, 47, 2964.

02. An asymmetric dinuclear copper(II) complex with phenoxo and acetate bridge: synthesis, structure and magnetic studies.   

      Dutta, G.; Debnath, R.K.; Kalita, A.; Kumar, P.; Sarma, M.; Boomi Shankar, R.; Mondal, B.

      Polyhedron, 2011, 30, 293.

01. Reduction of Copper(II) Complexes of Tripodal Ligands by Nitric Oxide and Trinitrosation of the Ligands.                       

      Sarma, M.; Kalita, A.; Kumar, P.; Singh, A.; Mondal, B.

      J. Am. Chem. Soc., 2010, 132, 7846

bottom of page